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ization can be obtained even with a mosaic crystal. 
Analogous considerations are valid for 9 other oper- 
ating points in Tables 3, 4 and 5. 
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A Method of Calculating Molecular Crystal Structures 
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A novel method of calculating the molecular position in a lattice of known dimensions is presented. 
The repulsive lattice energy is approximated by a sum of quadratic nonbonded interatomic potential 
functions and the lattice energy sum is minimized by full-matrix least squares. The convergence range 
from arbitrary trial models is greater than the previously used steepest descent method using (exp-6) 
nonbonded potentials. Greatly increased speed of convergence is also obtained because of the inclusion 
of off-diagonal terms and the small number of repulsive interactions which are considered. The calcu- 
lated packing models are sufficiently accurate to serve as a starting point for structure factor least- 
squares refinement based on diffraction data. 

Introduction 

A situation frequently encountered in the study of 
molecular crystals by diffraction methods is that the 
molecular structure is already known approximately, 
or at least, plausible predictions of the molecular struc- 
ture can be made from expected bond distances and 
angles. In order to verify the model and to refine the 
molecular structure from the diffraction data it is ne- 
cessary to locate the molecules in the unit cell of the 
crystal. In addition, the packing structure may be of 
considerable interest in itself even if the molecular 
structure is accurately known. For example, several 
different packing structures may be observed for the 
same molecular structure. Or, chemical and physical 
interactions between molecules may be closely related 
to their mode of packing in the crystal. 

The most obvious procedure which can be used to 
obtain the crystal packing of molecules is to minimize 
the lattice energy, neglecting thermal effects, using the 
best available representation of the non-bonded ener- 
gy* between the molecules, and assuming pairwise ad- 
ditivity (Williams, 1965a). The most important con- 

* For a general discussion of nonbonded energy see, for 
example, Hirschfelder, Curtiss & Bird (1954). 

tribution to the attractive energy in molecular crystals 
is the London dispersion energy, which has an inverse 
sixth power dependence on the interatomic separation. 
This term has the physical meaning of instantaneous 
dipole-dipole polarization. Terms involving quadru- 
poles or higher may safely be neglected as an initial 
approximation. 

Several investigators (Kitaigorodskii, 1965; Craig, 
Mason, Pauling & Santry, 1965) have shown that the 
contribution to the lattice energy from electrostatic 
dipoles or quadrupoles is small for typical molecular 
crystals. Further, the rate of change of electrostatic 
energy effects with respect to molecular position is 
small. 

The repulsive energy is of primary importance in 
determining the molecular position, provided the ob- 
served lattice constants are retained. The repulsive 
energy is due to overlap of filled electron shells and 
is a consequence of the required antisymmetry of the 
wave function for the system. The increase in repulsion 
energy with decreasing interatomic separation, d, may 
be fitted by a d -n term, with n chosen for best fit, or 
to an exponential exp ( - C d )  term, with C chosen for 
best fit. 

The pairwise sum for the lattice energy based on the 
usual models for the nonbonded energy, such as the 
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Lennard-Jones (6-12) formula and the Buckingham 
(6-exp)  formula lead to nonquadratic expressions for 
the lattice energy. The lattice energy expressed in this 
form can be minimized by a steepest descents proce- 
dure (Williams, 1965a) to find the correct packing 
structure. However, the calculation is lengthy, because 
a large number ofinteratomic pairs must be considered. 
And the convergence properties of the calculation, 
starting from arbitrary initial packing structures, are 
rather poor (Williams, 1967). Two problems which 
may be mentioned for the steepest descent calculation 
are that quantitative shifts are not directly obtained 
by this method, and no interaction between different 
orientational parameters may be included. Thus, shifts 
are made in rather arbitrary increments along the 
gradient vector (Williams, 1964). The noninclusion of 
parameter interactions also makes the steepest descent 
method analogous to the diagonal-matrix least-squares 
approximation familiar to crystallographers in least- 
squares structure factor refinement. In the example of 
refinement of crystallographic parameters from ob- 
served structure factor data it is well established that 
the full-matrix least-squares method has superior con- 
vergence properties compared to the diagonal-matrix 
approximation. (The least-squares problem, of course, 
is linearized by expanding the function about a trial 
model point in a Taylor's series and retaining only the 
first-order terms.) 

The previously reported steepest descent method can 
be used to calculate the lattice constants of the crystal 
as well as the molecular packing position (Williams, 
1967). By carrying out calculations for different space 
group symmetries it is also possible to predict the pack- 
ing symmetry, i.e. the packing symmetry which leads 
to the greatest (negative) packing energy. Other prop- 
erties of the crystal, such as its elastic constants and 
its heat of sublimation, may be calculated from this 
model. It is even possible, with suitable simplifying 
assumptions, to calculate anisotropic coefficients of 
thermal expansion from this model which are in rea- 
sonable agreement with the observed anisotropic ex- 
pansions (Williams, 1966a). 

Least-squares packing analysis 

Since in practice the lattice constants and cell symmetry 
are relatively easy to obtain, we may consider them 
to be known in considering the problem of finding the 
molecular positions in the unit cell. The use of the 
observed unit-cell dimensions effectively incorporates 
molecular attractions into the packing problem, since 
the molecular volume is effectively restricted. We then 
need consider only the nonbonded interatomic repul- 
sions in the packing calculation. As a refinement of 
this approach it would be possible to include special 
attractive forces, such as hydrogen bonding or strong 
coulombic attraction, into the calculation. 

The more powerful full-matrix least-squares method 
may be utilized in packing analysis if the lattice sums 

consist of squared terms. A suitable expression for the 
interatomic nonbonded potential repulsive energy is 

e r = w ( d g - d g )  2, de<d0; e r = 0 ,  de>d0, 

where do is an empirical constant much like a van der 
Waals diameter, de is an interatomic distance for the 
current trial model, and w is a weighting or scaling 
factor (Williams, 1968). The repulsive lattice energy is 
then 

2Er(lattice) = ,g er , de < do, 

where the pairwise sum is taken between atoms in the 
reference molecule and atoms in the surrounding mol- 
ecules. An early use of this method was the solution 
of the crystal structure of dibenzoylmethane, in which 
case n was chosen as 2, and w = 1, along with very ap- 
proximate do values (Williams, 1966b). In this example 
the molecular structure was not known exactly, and 
several nonplanar molecular models were tried. The 
possibility of using various molecular models as input 
to the packing calculation shows the utility of the 
method in establishing gross features of the molecular 
architecture. 

Mathematical development 

The best fit to the nonbonded potential energy curves 
near their minima is obtained for the quadratic case 
(n--1), as is discussed in a subsequent section. We 
therefore simplify the mathematical development by 
setting n=  1. We derive the equations for the case of 
general crystal symmetry, although as will be seen 
later, a simplification occurs if only triclinic, mono- 
clinic, and orthorhombic symmetries are allowed. 

We wish to minimize the lattice repulsion energy, 
a sum of squares. 

Er= ½ _r w(do-d:~m)2 , djkm < do . 
jkm 

The subscript j refers to an atom in the asymmetric 
unit; the subscripts k and m refer to atom k trans- 
formed by symmetry operation m. The normal equa- 
tions are, using a first order Taylor's series expansion, 

where 

and 

FAp = G,  

F~p=,r ,w 
jkrn ~P= ~Pp 

G~,= - ,~ ~d:km 
jk,n W -~p~--  [do-  djkm(p°)] , 

and Ap is the shift vector leading to a lower value of 
Er, compared to the value E ° calculated at the trial 
parameters p0. The parameters are three molecular 
translations and three molecular rotations for each 

A C 25A - 5 
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molecule in the asymmetric unit, except where re- 
stricted by symmetry considerations. 

We need to evaluate the derivatives of dj~,m with 
respect to the parameters p. 

djkm=lX~-X~ml , (1) 

where Xij are the cartesian coordinates ( i= 1,2, 3) of 
atom j,  and Xl~m are the cartesian coordinates of atom 
k transformed by symmetry operation m. We define 
the (3 x 3) symmetry matrix s and the translation col- 
umn vector t in unit-cell space as 

X/cm = SmX/c + t m ,  

where the tm include cell translations as well as those 
due to screw axes and glide planes. 

Crystal unit-cell space may be transformed to ref- 
erence cartesian space by the matrix D. If we choose 
cartesian axes X2 and X3 coincident with crystal axes 
b and e*, and X~ in the ab plane perpendicular to be*, 
the elements of D are 

[ a s i n ?  0 c ( c o s / ~ - c o s ~ c o s y ) / s i n y ]  
a c o s y  b ccosc~ ] 

0 0 V/ab sin y 

where 

V= abc(1- c o s 2 ~ -  COS2/~ - COS2~ ) - - 2 c o s  ~cosflcos y)x/2. 

Using capital letters for the operators in cartesian 
space, we have 

Xlcm= SmXlc + Tm , (2) 
where 

Sm= DsmD -a , and Tm = Dtm • 

In the triclinic, monoclinic, and orthorhombic crystal 
systems the off-diagonal elements of the S matrices are 
always zero, and the diagonal elements are always + 1. 
Note that for oblique systems the components of Tm 
are general even though one or more of the compo- 
nents of tm may be zero. 

We define the molecular center of rotation at X~, 
X~, and X~, the small molecular rotations 0a, 02, and 
03 about the corresponding cartesian axes, and the 
molecular translations AXx, AXz, and AX3 (Goldstein, 
1959, p. 124). For atoms in the reference molecule the 
new coordinates after rotation and translation are 

Ex l 0 02][XlX ] 
x ; [ =  03 1 - 0 ,  x 2 - x ;  
G J  ol 1 x , - x ;  

-xd+Axl] 
+ x2°+Jx2[  (3) 

X3° + A X 3 J  

Substitution of equations (3) and (2) into equation (1) 
yields a closed expression for the nonbonded inter- 
atomic distances as a function of the (small) rotations 
and translations of the reference molecule. 

Equation (1) may be expanded into components 
along the cartesian reference axes in the following 
form: 

4 r. = + + cD,/  , 
where 

C~ = X1j - S ,  Xak-  Si2Xzk - Sa3X3~- T~ 
Cz= X2j -  &aXle -  &2X2~- &3X3~- T2 
C 3 = X M - S31X1/c - S32X2/c - 833X3/c - Z 3 .  

In the latter equations the subscripts on S and T refer 
to cartesian components for a given symmetry trans- 
formation, m. Thus, the derivatives of the distance with 
respect to a parameter p are given by 

( 0C1 0C2  3 C 3 )  cgd 1 C1 + C2 + C3 • 

Table 1 gives the six derivatives of Ca, Cz, and C3 
with respect to molecular rotation and translation. The 
derivatives are evaluated, of course, at the trial model 
coordinates. 

The case of more than one rigid molecule in the 
crystallographic asymmetric unit may easily be handled 
by dividing the derivatives into grouped sums appli- 
cable to each rigid molecule. The packing problem be- 
comes more difficult of solution because of the addi- 
tional variables which are introduced specifying the 
rotation and translations of each rigid molecule in the 
asymmetric unit. Nonbonded contacts between dif- 
ferent molecules in the asymmetric unit having the 
same symmetry transformation must be included. 

Since a large portion of the time required for the 
calculation is in making up a table of contacts less than 
do, it is expedient to preserve this table in the computer 
memory and to use it for several least-squares cycles. 
In the case of grossly incorrect starting positions, it is 
also found expedient to limit the magnitude of the 

Table 1. Derivatives o f  Ca, C2, and C 3 with respect to molecular rotation and translation 

The center of rotation is taken at the origin; for non-origin rotation the ith component of the rotation center, X~ o, is substracted 
from X~j and X~g. 

Parameter C1 C2 C3 
01 $12X3/c - Sl3X2k -- X31 + 822X3/c - 823X2k X2j + S32X3/c - S33X2k 
02 X3J -- S l  1X3/¢ + Sl  3Xl/c -- S21X3/c -J- 823X1/c -- XI~ - $31X3/¢ "{- S33X1/c 
03 --X2J + S11X2~ -- S12X1/¢ X1 j-q- $21X2/c- $22XI/c 831X2/c- 832)/'1 k 
AX1 1 -- S l l  - $21 - $31 
AX2 - S ~ 2  1 - 822 . $32 . 
AS3 -- S13 -- 823 1 - 833 
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parameter shifts. For example, we have limited shifts 
to 0.1 radian or 0.2/~ per cycle. The incremental rota- 
tion matrix shown in equation (3) is not exactly ortho- 
normal. The related orthonormalized matrix must be 
used to shift the atomic coordinates in order to pre- 
serve the molecular shape (Whittaker, 1944, p. 7). The 
elements of this related orthonormalized matrix are: 

[ ~2-ri2-~2+02 2(~r/- (0) 2(~(+ r/0) ] 
2(~+~0) _~2+~2_~2+02 2(,1~-~0) [ 
2(~(-r /0)  2(r/f+ ~0) - ~ 2 - r / 2 + ( 2 +  02J 

where 
0=  [1.0 - 0.25(0 7 + 022 + 0])]1/2 

= 0 1 / 2  r ] = 0 2 / 2  ~ = 0 3 / 2 .  

The physical significance of this matrix is a counter- 
clockwise rotation 10] about an axis having direction 
cosines ~, r/, (. 

The orthonormalized incremental rotation matrix is 
then applied to the atomic coordinates and to the input 
orientation matrix. Because of the possibility of an 
error in the input matrix, and to avoid the cumulative 
effects of rounding errors on orthonormality, a further 
check is desirable. This check may be made on input 
and periodically during least-squares cycles. 

This check may be made by first normalizing the 
third column of the input rotation matrix. Then the 
second column is formed by the vector product of the 
first and third columns, normalizing and preserving 
chirality. The first column is then formed by the nor- 
malized vector product of the second and third col- 
umns, again preserving chirality. In this manner the 
input orientation matrix may be periodically reortho- 
normalized. 

Nonbonded potential parameters 

The best interatomic nonbonded potential parameters 
in the specified quadratic functional form are those 
which yield the best fit and fastest convergence to a 
variety of observed crystal structures. The criterion of 
best fit to a series of hydrocarbon structures has already 
been used to derive ( e x p - 6 )  potential parameters. 
This same procedure could be applied to derive w and 
do for the quadratic functions. 

A less time-consuming approach is to fit the best 
available (exp - 6 )  functions with quadratic functions. 
We have used this approach for C . . .  C, C . . . H ,  and 
H . . .  H potentials. The (exp - 6) potentials which were 
fitted (Williams, 1967) are (in kcal.mole -I and A): 

Ecc = - 568d -6 + 83630 exp ( -  3.60d) 
Eci~ = - 125d -6 + 8766 exp ( -  3.67d) 
E r ~  = - 27"3d -6 + 2654 exp ( -  3.74d). 

The quadratic potential function is zero at its min- 
imum. A possible way to derive values for w and do 
would be fit the repulsive part only of the (exp - 6 )  
potential. A second alternative would be to add the 

depth of the potential well to the (exp - 6 )  functions 
and then do a least-squares fit. A third alternative 
would be to fit the first derivatives (force) of the quad- 
ratic potential to the first derivatives of the (exp - 6 )  
potential. In each case the fit would encompass the 
range of repulsive contacts normally found in the 
crystal. 

We have chosen the third alternative and have made 
a weighted least-squares fit as summarized in Table 2. 
The weighting scheme used corresponds to the assump- 
tion of uniform relative error in the first derivatives. 
The fit of the functions at the grid points is given in 
Table 3. The energy range covered is about 400 
cal.mole -1. The mean error of fit is 12 cal.mole -1, being 
somewhat better for C . . .  C and somewhat worse for 
H. • • H interactions. In the latter case more grid points 
were included to reflect the wide range and importance 
of the H - . . H  interactions. The goodness of fit ob- 
tained was believed sufficient in view of the probable 
errors in the (exp - 6 )  functions being fitted. This fit- 
ting procedure is of course not limited to (exp - 6 )  
potentials but can be used with (6-12) or any other 
potential type which is available for the atomic inter- 
actions of interest. 

Table 2. Least-squares fits of quadratic potentials to 
(exp - 6 )  potentials, based on the first derivative and 

constant relative error 
Potent ia l  type  C" • • C C.  • • H H .  • • H 

Gr id  increment  (A) 0.1 0.1 0.1 
Lower  limit (/~) 3.2 2.5 2-2 
U p p e r  limit (/~) 3.6 3"0 2.9 
do (A) 3.65 3.03 2.88 
w (kcal .mole-1 A2) 1"87 1.56 1.00 
AE(max)  (cal .mole-1) * 12 17 24 
AE(mean)  (cal .mole-a)* 7 12 18 

* The difference in energy between the quadra t ic  and 
(exp-6)  funct ions  when a subt rac t ive  cons tant ,  A, for  best  fit 
is appl ied to the quadra t ic  potential .  

Table 3. Comparison of quadratic and 
(exp - 6) potentials (cal.mole -1) 

C ' " C  

A = 8 0  

C "  • " n  

A = 4 2  

H "  • " H  

A = 1 2  

d (/~) (exp-6)  Quadra t i c -A  

3.2 301 301 
3-3 139 151 
3.4 36 38 
3"5 - 27 - 37 
3"6 - 64 - 75 

2.5 396 389 
2"6 224 241 
2"7 113 123 
2.8 43 37 
2-9 - 1 - 17 
3.0 - 26 - 41 

2.2 468 446 
2.3 304 321 
2.4 192 216 
2-5 119 130 
2"6 71 65 
2"7 39 19 
2"8 18 - 6  
2.9 6 - 1 1  

A C 25A - 5* 
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Trial packing models 

An obvious way to generate starting models for pack- 
ing analysis is to use a grid for the angles and trans- 
lations sufficiently fine to ensure convergence. This 
procedure is practical for packing analysis, in contrast 
to structure factor least squares, because of the wider 
convergence range of the former. A false minimum in 
the packing problem may quickly be rejected by com- 
paring the observed and calculated values of the struc- 
ture factors for a few low angle reflections. The cor- 
rect minimum in the packing problem may also be 
recogmzed by the magnitude of the repulsion energy, 
2Er. (Alternatively, the repulsion-only model could be 
used for a more complete lattice energy calculation 
using the ( e x p - 6 )  potential functions. This value 
could then be compared with an estimate of the heat 
of sublimation.) While many false minima are usually 
encountered in the packing problem, in every case so 
far studied the false minima have always a larger cal- 
culated repulsion energy than the correct minimum. 
The nonbonded contacts at the false minimum will 
also show unreasonably short distances. 

The number and range of grid points to be con- 
sidered may be reduced by consideration of several 
factors. Hirshfeld (1968) has shown how the space 
group symmetry may be used to reduce the number 
of trial packing models. These considerations lead im- 
mediately to the conclusion that only a portion of the 
unit cell, the 'Cheshire cell', need be considered in the 
packing problem. The grid points may also be reduced 
by the fact that the molecule cannot be too close to 
symmetry elements without translation, i.e. inversion 
centers, mirror planes, and rotation axes, unless the 
molecule itself has that symmetry. Strong X-ray re- 
flections may also limit the volume of trial parameter 
space to be scanned. For example, the orientation of 
a planar molecule might be revealed by an especially 
strong reflection, and only the translation position re- 
quires scanning over a wide range. 

The convergence range of least-squares packing 
analysis is wider than the steepest descent packing 
analysis which has been used with (exp - 6 )  potential 
functions. We report the results of convergence studies 
for several hydrocarbon crystal structures. In each 
case the location of the hydrogen repulsion center was 
assumed shifted inward by 0.07/k (Williams, 1965b). 
For aromatic hydrogen the effective C-H bond length 
was thus taken as 1.027/k. 

Benzene 
Since the molecule has a crystallographic center of 

symmetry, only three rotation parameters are needed 
(Bacon, Curry & Wilson, 1964). Preliminary investiga- 
tions indicated that special orientations, such as the 
molecular plane parallel to a cell edge, should be 
avoided. We wished to consider only a small number 
of angular grid points, and the following (3 x 3) rota- 
tion matrices were devised. Starting molecular coor- 

dinates (in the X Y  plane) were first shifted a small 
amount ( + 2  deg) by rotating successively about the 
X, II, and Z cartesian axes. This was followed by rota- 
tion of + 20 or + 60 deg about each axis. For example, 
the following initial rotation matrix was used in the 
case of a - 2 0  deg rotation about the Y axis: 

cos ( -  20) 0 - sin ( -  20)] 

/ 0 1 0 
I sin ( - 20) 0 cos ( -  20)_I 

[i [i°!] [i ° !] x ~ 1 ~ -  

0 0 # 

where c~= cos (2) and f l= sin (2). Thus twelve trial 
models on a coarse angular grid were generated with 
avoidance of special symmetry situations. (An alter- 
nate approach would be to make use of molecular 
symmetry as discussed by Hirschfeld (1968) and gen- 
erate trial models using Eulerian angles.) 

No information about the observed packing struc- 
ture was contained in any of the trial models. In the 
benzene case we found rapid and smooth convergence 
to the correct observed structure in every case. With 
specification of four least-squares cycles per contact 
table, an average of five tables was required to obtain 
convergence. On an IBM 360 model 30 computer the 
average time required for convergence was 2.5 minutes. 

For comparison, the same trial models were sub- 
jected to steepest descent refinement using (exp - 6 )  
potentials. The calculation took about 12 times longer 
and four of the 12 trial models failed to converge to 
the observed structure. 

Napthalene 
Out of the twelve starting orientations, two led to 

the observed structure, with 2Er=0"77 kcal.mole -1. 
The other ten orientations led to one or another of 
five false minima with 2Er values of 4.25, 5.36, 8.85, 
18.14, or 23-87 kcal.mole -1. Thus the correct structure 
(Cruickshank, 1957) had the lowest Er and was easily 
recognizable. On the average, seven contact tables were 
generated, requiring 4-6 minutes for convergence to a 
minimum. 

An examination of the nature of the false minima 
structures was made. In each case an incorrect mode 
of molecular interlocking was obtained. This problem 
is illustrated in Figs. 1 and 2. Fig. 1 shows the observed 
structure, while Fig.2 shows the false minimum at 
2Er = 4"25 kcal.mole -1. Packing analysis was unable to 
surmount the energy barrier separating the two struc- 
tures. In an attempt to overcome this problem, we 
have used initially expanded lattice constants, gradually 
contracting to the observed cell dimensions. This pro- 
cedure simulates to some extent the process of crystal- 
lization. The results so far have been disappointing. 
We conclude that convergence to the correct minimum 
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can normally be attained only when the observed 
molecular interlocking scheme is accessible from the 
trial model. 

Phenanthrene 
The crystal is acentric and two molecular translation 

coordinates are required as well as three rotations 
(Trotter, 1963). For trial models we used the same 
twelve angular orientations and a 1/~ grid in the 
'Cheshire' cell. Convergence to the observed structure 
was obtained in as many as four angular orientations 
for a given translational starting point. A large num- 
ber of false minima were found with 2Er ranging from 
2.53 to 19.38 kcal.mole -1, compared to 1.25 kcal.mole -1 
for the observed structure. 

Fig. l. The observed naphthalene packing structure, 2Er= 
0"77 kcal.mole -1 . 

Triptycene 
The crystal is acentric, space group P212121, and all 

six rotation and translation parameters are required 
(Neuman, 1967). The a and c lattice constants are 
nearly identical, leading to duplicate false minima with 
a and c interchanged, with nearly identical values of 
2Er. Diffraction data quickly eliminated the incorrect 
choice of axes. 

Since the molecule is globular, we first found the 
best calculated packing position for spheres in the ob- 
served lattice, using a quadratic potential with a large 
do. A broad minimum was found at (¼, ~, 0). The same 
minimum position was found with better definition by 
finding the best translation position of a hypothetical 
icosahedral 'molecule' in the observed unit cell. 

Using this initial position for the molecular center, 
we obtained convergence to the observed structure in 
three of the twelve trial angular orientations. An aver- 
age of nine contact tables were generated, requiring 
approximately 12 minutes for each trial model to con- 
verge. Atomic movements of over 4 ~ were noted in 
going from a trial model to the correct structure. 

Solution of the diffraction phase problem for unknown 
structures 

In addition to the triptycene structure discussed 
above, the packing structures of two other compounds 
have recently been solved by this method. The crystal 
structure of the hydrocarbon C13H12 (I) has been deter- 
mined by Katz, Knox & Neuman (1968). The crystal 
structure of the stable free radical 1,3,5-triphenyl- 
verdazyl (C20N4H17, II) has also been determined (Wil- 
liams, 1969). In the latter case molecular flexibility due 
to rotations of the phenyl groups was considered. By 
varying the phenyl rotations on a grid the correct 
molecular packing was obtained at the lowest lattice 
repulsion energy. 

() 

Fig,2, A false minimum for the naphthalene packing structure, 
2Er = 4-25 kcal.mole -1 . (II) 
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Calculated packing structures 

Except for benzene, false minima were sometimes ob- 
tained for each structure. It is significant that in no 
case among the many false minima examined was the 
packing function less than that for the observed struc- 
ture minimum. Thus packing analysis provides an inde- 
pendent check of structures determined by diffraction 
methods. In cases where ambiguity in the diffraction- 
determined structure exists, perhaps because of inac- 
curate data, packing analysis might clarify the packing 
structure. 

The presence or absence of an inversion center can 
be investigated by performing packing calculations in 
both centric and acentric space groups. Similarly, gross 
molecular geometry may be investigated by packing 
analysis. An example would be distinguishing between 
cis-trans isomers on the basis of how well the molecules 
pack in the observed unit cell. 

At the correct minimum, the goodness of fit of the 
calculated packing structures of hydrocarbons is en- 
tirely adequate to solve the diffraction phase problem. 
The absence of a symmetry center does not make 
packing analysis more difficult, unless additional rota- 
tional or translational degrees of freedom are intro- 
duced into the packing problem. Typically, the fit to 
hydrocarbon structures is such that all carbon atoms 
are located to within about 0.1 A, and refinement from 
this point by structure factor least squares is straight- 
forward. 

In dealing with unknown structures it is desirable 
to predict the minimum value of 2Er. We have calcu- 
lated minimum 2Er values for a series of hydrocarbon 
structures as follows: benzene, 0.88; napthalene, 0.76; 
anthracene, 2.44; phenanthrene, 1.25; pyrene, 1.55; 
chrysene, 1.41; triphenylene, 3.16; perylene, 2.26; 
n-pentane, 2.51; n-hexane, 2.16; n-octane, 2.69; and 
triptycene, 3.12 kcal.mole -1. 

Examination of the repulsions at the calculated min- 
imum indicates that H . . .  H interactions predominate. 

With the simple assumption of a constant repulsive 
contribution for each hydrogen in each structure we 
arrive at figures of 0.10 to 0.25 kcal.mole -x per hydro- 
gen atom for both aromatic and aliphatic hydrocar- 
bons. The procedure of counting hydrogen atoms ap- 
pears better than trying to find a constant ratio of re- 
pulsive energy to the total lattice energy (heat of sub- 
limation). Further work is needed to estimate the re- 
pulsion for materials other than hydrocarbons. 

We thank Dr M.A. Neuman for his interest and for 
communicating results for the triptycene structure 
prior to publication. 
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